CYTOSTATIC 6-ARYLPURINE NUCLEOSIDES II.+ SYNTHESIS OF SUGAR-MODIFIED DERIVATIVES: 9-(2-DEOXY- β-D-erythro-PENTOFURANOSYL)-, 9-(5-DEOXY- $\beta-\mathrm{D}-\mathrm{RIBOFURANOSYL)-}$ AND 9-(2,3-DIHYDROXYPROPYL)-6-PHENYLPURINES

Michal Hocek $^{a 1, *}$, Antonín Holía ${ }^{a 2}$, Ivan Votruba ${ }^{a 3}$ and Hana Dvořáková ${ }^{b}$
${ }^{a}$ Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610 Prague 6, Czech Republic; e-mail: ${ }^{1}$ hocek@uochb.cas.cz, ${ }^{2}$ holy@uochb.cas.cz, ${ }^{3}$ votruba@uochb.cas.cz
${ }^{b}$ Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague, CZ-166 28 Prague 6, Czech Republic; e-mail: hana.dvorakova@vscht.cz

Received October 12, 2000
Accepted November 10, 2000

Abstract

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(4-substituted phenyl)purines, 9-(5-deoxy- β-D-ribo-furanosyl)-6-(4-substituted phenyl)purines and 9-(2,3-dihydroxypropyl)-6-(4-substituted phenyl)purines were prepared by the Suzuki-Miyaura cross-coupling reactions of the corresponding protected 9 -substituted 6 -chloropurines with substituted phenylboronic acids followed by MeONa mediated deprotection. In contrast to the highly active 6-phenylpurine ribonucleosides, the title compounds did not show any considerable cytostatic activity. Key words: Purines; Nucleosides; Cross-coupling reactions; Boronic acids; Acyclic nucleoside analogues; 5'-Deoxyribonucleosides; 2'-Deoxyribonucleosides; Cytostatic activity; Antitumor agents.

Purines bearing a carbon substituent in the position 6 display diverse types of biological activity. The parent compound of this group, 6-methylpurine ${ }^{1}$, is known for its cytotoxicity; its liberation from the 2'-deoxyribonucleoside by purine nucleoside phosphorylases is used for detection of mycoplasma in cell cultures ${ }^{2}$. It is highly potent and toxic to non-proliferating and proliferating tumor cells. Recently, the use of cytotoxic bases, i.e. 6-methylpurine, liberated by purine nucleoside phosphorylases was proposed as a novel principle in the gene therapy of cancer ${ }^{3}$. Very little has been known about biological activity of other 6 -C-substituted purines until recent new findings of cytokinin activity of 6-(arylalkynyl)-, 6-(arylalkenyl)- and

[^0]6-(arylalkyl)purines ${ }^{4}$, cytostatic activity of 6-(trifluoromethyl)purine riboside ${ }^{5}$, corticotropin-releasing hormone antagonist activity of some $2,8,9$-trisubstituted 6 -arylpurines ${ }^{6}$ and antimycobacterial activity of 6 -aryl-9-benzylpurines ${ }^{7}$.

Recently we have discovered a new class of cytostatic compounds - substituted 6-phenylpurine derivatives ${ }^{8}$. The structure-activity relationship (SAR) studies revealed a crucial influence of the presence of the β-d-ribofuranosyl moiety and substitution effect on the biological activity. The 6-(substituted phenyl)purine ribonucleosides displayed significant in vitro cytostatic activity (inhibition of the cell growth of L1210, HeLa S3 and CCRF-CEM cell cultures, $\mathrm{IC}_{50}=0.25-10 \mu \mathrm{~mol} / \mathrm{I}$); their corresponding $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-acetates showed lower activity ($\left.\mathrm{IC}_{50}>4 \mu \mathrm{~mol} / \mathrm{I}\right)$, while the 6 -phenylpurine bases and 2-amino-6-phenylpurine ribonucleosides were entirely inactive in these assays. Analogous 6-(het)arylpurine acyclic nucleotide analogues were also devoid of any cytostatic activity ${ }^{9}$.
There are several possible metabolic pathways of purine ribonucleosides: (i) cleavage (e.g. by purine nucleoside phosphorylase) to the purine bases, which can be further catabolized or transformed to their 2'-deoxyribonucleosides or (ii) phosphorylation by nucleoside and nucleotide kinases to their 5'-phosphates, 5'-diphosphates and eventually 5'-triphosphates which then participate in or interfere with the nucleic acids synthesis de novo or are transformed to the corresponding 2'-deoxyribonucleotides with similar potential activity. Many enzymes take part in these processes and thus might be potential targets for the action of biologically active modified nucleosides. Moreover, purine nucleosides can directly interfere with multiple regulation processes. In order to extend the SAR study and to gain a first insight into the understanding of the mechanism of action of the cytostatic 6 -phenylpurine ribonucleosides, we wish to report here on the synthesis and activity of selected sugar-modified derivatives of the parent compounds. The first group of the modified nucleosides under study were the 2'-deoxyribosides since many enzymes specifically recognize them as substrates or inhibitors. The 5'-deoxyribofuranosides lacking the nucleoside kinase phosphorylation site were the second class of compounds selected for their potential generation of purine bases by PNPase ${ }^{10}$. The third group of target compounds examined in this study were racemic 9-(2,3-dihydr-oxypropyl)-6-phenylpurines. These acyclic nucleoside analogues are known to mimic the parent ribonucleosides and due to the absence of the labile nucleosidic bond they do not undergo cleavage by phosphorylases. Since in the series of the parent 6 -(4-X-substituted phenyl)purine ribonucleosides the most active compounds were 6-phenyl-, 6-(4-fluorophenyl)- and

6-(4-methoxyphenyl)purine derivatives, in this study we have also focussed on these three types of 6-(4-substituted phenyl)purines in each series of sugar modified nucleosides.

Encouraged by our recent experience ${ }^{5}$ with facile regio- and stereoselective glycosidations and alkylations of 6-(trifluoromethyl)purine, the first approach chosen for the preparation of the target 9-glycosyl-6-phenylpurines was the glycosidation of 6-phenylpurine bases. Thus 6-phenylpurine $\mathbf{2 a}$ and 6 -(4-methoxyphenyl)purine $\mathbf{2 c}$ (easily prepared as shown in Scheme 1) were glycosylated with 3,5-bis-0-(4-toluoyl)-2-deoxy- α-D-erythropentofuranosyl chloride (3) in the presence of NaH under standard conditions. Unfortunately, these reactions were not stereoselective and inseparable anomeric mixtures of N-9 glycosyl derivatives 4 and 5 were obtained (Scheme 1).

(i) 4-X-PhB(OH $)_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, toluene; (ii) Dowex $50 \mathrm{X} 8\left(\mathrm{H}^{+}\right), \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$; (iii) NaH , acetonitrile

$$
\mathrm{Tol}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-
$$

Scheme 1
Therefore we have chosen the second approach consisting in preparation of suitably protected 9-glycosyl- or 9-(2,3-dihydroxypropyl)-6-chloropurines followed by the Suzuki-Miyaura cross-coupling reactions ${ }^{11}$ with substituted phenylboronic acids and deprotection. Due to the known
lability of 6-C-substituted nucleosides under acidic conditions ${ }^{12}$ we have selected acyl protective groups cleavable by base-catalyzed transesterification under anhydrous conditions. Both 9-(3,5-bis-O-(4-toluoyl)-2-deoxy- β-D-erythro-pentofuranosyl)-13 (6) and 9-(2,3-diacetoxypropyl)-6-chloropurine ${ }^{14}$ (8) were prepared by known methods. 1,2,3-Tri-O-acetyl-5-deoxy-D-ribose (9, ca 1:1 anomeric mixture) was prepared in four steps from D-ribose by a procedure recently published for its L-enantiomer ${ }^{15}$. Attempted glycosidation reaction of its corresponding halogenose with sodium salt of 6-chloropurine gave a complex mixture with only trace amounts of the desired product. Therefore we used a direct approach making use of $\mathrm{SnCl}_{4^{-}}$ mediated reaction ${ }^{16}$ of 6 -chloropurine (10) with the 5 -deoxyribosyl acetate 9. In contrast to analogous selective glycosidations ${ }^{15,17}$ of other heterocyclic bases with compound 9 and to relatively selective ribosylation ${ }^{18}$ of silylated 6-chloropurine with 1,2,3,5-tetra-0-acetylribose that give β-nucleosides in ca 50%, this reaction was neither regio- nor stereoselective and a complex mixture containing four isomers (7-/9- and $\alpha-/ \beta-$) was obtained. The desired $9-\beta$-isomer $\mathbf{7 b}$ was isolated in 30% yield (ca 90% purity) from this mixture by column chromatography, followed by the 9- α-isomer 7a (13%) and 7 - α-isomer 7c (4\%) (Scheme 2). The lack of selectivity in this glycosidation is quite surprising and indicates that in this particular case the reactions does not proceed exclusively via a neighbouring group participation mechanism (leading selectively to β-anomers) as usual ${ }^{19}$ for 2-0-acylated pentofuranosyl donors of ribo-configuration.

Scheme 2
The appropriate 9-substituted 6-chloropurine intermediates 6, 7b and $\mathbf{8}$ were used for the $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyzed cross-coupling reactions with substi-
tuted phenylboronic acids 11a-11c under standard conditions in toluene at $100{ }^{\circ} \mathrm{C}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Scheme 3). All these reactions proceeded smoothly to give the corresponding 6-phenylpurine derivatives 4a-4c, 12a-12c and 13a-13c in good yields. The standard deprotection protocol ${ }^{8}$

making use of the reaction of acyl-protected ribonucleosides with NaOMe in methanol followed by neutralization with Dowex $50 \times 8\left(\mathrm{H}^{+}\right)$could not have been used due to extreme lability of the free deoxyribosides towards acids; in compound 14a we have observed a complete cleavage of the nucleosidic bond during treatment with Dowex $50 \mathrm{X} 8\left(\mathrm{H}^{+}\right)$within 5 min giving quantitatively 6-phenylpurine (2a). Therefore the deprotection has been performed using strictly catalytic ($5 \mathrm{~mole} \%$) amount of MeONa with prolonged reaction times (48 h) and the products were isolated without neutralization by column chromatography followed by crystallization giving the target nucleosides 14a-14c and 15a-15c in good yields. In contrast to the nucleosides, the 2,3-dihydroxypropyl derivatives 16a-16c were perfectly stable and were isolated by the standard method using neutralization.
The structure assignment was based on NMR experiments. All compounds were fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. As some of the glycosidation reactions leading to key intermediates were neither regio- nor stereoselective, complete NMR assignment (${ }^{1} \mathrm{H}-\mathrm{NOE}, \mathrm{COSY},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC, HMBC experiments) of selected intermediates was essential.
To analyse the inseparable mixtures of compounds 4 and 5 (Scheme 1) with respect to the regioselectivity of glycosidation reaction ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC experiments, providing three-bond correlations, were used. In both cases 4 and 5, the crosspeaks in HM BC spectra indicate connectivities between protons $\mathrm{H}-1^{\prime}$ and carbon atoms $\mathrm{C}-8$ and $\mathrm{C}-4$, which is characteristic for $\mathrm{N}-9$ regioisomers. The determination of anomeric configurations of compounds 4 and 5 was based on NOE (DPFGSE NOE) experiments, providing correlation between nuclei which are close in space (less than 0.5 nm). While for the major compounds $\mathbf{4 a}$ and $\mathbf{4 c}$ we observed NOE connectivities between protons $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$ a and between $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-2^{\prime} \mathrm{b}$, in minor compounds 5 a and 5 c NOE between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$ b and between $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-2^{\prime}$ were found. These results indicate β-anomeric configuration of the prevailing deoxyribosides $\mathbf{4 a}$ and $\mathbf{4 c}$, while the configuration of minor compounds $\mathbf{5 a}$ and $\mathbf{5 c}$ is α. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of pure β-anomers $\mathbf{4 a}$ and $\mathbf{4 c}$ prepared in an alternative way (Scheme 3) with the spectra of prevailing isomers in the mixtures of $\mathbf{4}$ and 5 confirmed that the expected deoxyribosides 4 are N -9- β-isomers.

Complete NMR analysis was also used to examine a complex mixture of all four possible isomers after the reaction of 6 -chloropurine (10) with acetate 9. The crosspeaks in HMBC spectra of compounds 7a and 7b indicating connectivities between protons $\mathrm{H}-1^{\prime}$ and carbons $\mathrm{C}-8$ and $\mathrm{C}-4$ confirm the expected $\mathrm{N}-9$ substitution, while in the compound $\mathbf{7 c}$ the connectivities between proton $\mathrm{H}-1^{\prime}$ and carbon $\mathrm{C}-8$ and $\mathrm{C}-5$ establish the $\mathrm{N}-7$ substitution.

For the determination of anomeric configuration of isolated isomers NOE experiments were used. In 5'-deoxyriboside 7b NOE interaction was observed between protons $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-4^{\prime}$ but not between $\mathrm{H}-1^{\prime}$ and $\mathrm{CH}_{3}-5^{\prime}$ that characterizes β-anomer. On the other hand, NOE connectivities between protons $\mathrm{H}-1^{\prime}$ and $\mathrm{CH}_{3}-5^{\prime}$ and the absence of NOE between protons $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-4^{\prime}$ confirm α-anomeric configuration of compounds 7a and 7c. The clearly assigned $9-\beta$-configuration of the intermediate $\mathbf{7 b}$ and similar complete NMR analysis establishing 9- β-configuration of 5^{\prime}-deoxyriboside 15a was sufficient for the determination of the configuration and constitution in the series of $\mathbf{1 2}$ and $\mathbf{1 5}$.

In conclusion, 2-deoxy- and 5-deoxyribonucleosides $\mathbf{1 4}$ and $\mathbf{1 5}$ as well as acyclic nucleoside analogues $\mathbf{1 6}$ derived from substituted 6-phenylpurines were prepared by the Suzuki-Miyaura cross-coupling reactions of the corresponding 9 -substituted 6 -chloropurines 6, 7b, 8 with phenylboronic acids 11a-11c followed by MeONa mediated deprotection in good yields. The deoxyribosides 14 and $\mathbf{1 5}$ appeared to be extremely acidolabile. The title nucleoside analogues 14a-14c, 15a-15c and 16a-16c were tested for their cytostatic activity (inhibition of cell growth of the following cell cultures: mouse leukemia L1210 cells (ATCC CCL 219), murine L929 cells (ATCC CCL 1), human cervix carcinoma HeLaS3 cells (ATCC CCL 2.2) and human T lymphoblastoid CCRF-CEM cell line (ATCC CCL 119)). In contrast to the significant in vitro activity of the corresponding ribonucleosides in these cell lines, none of the deoxyribosides $\mathbf{1 4}$ and $\mathbf{1 5}$ or acyclonucleosides $\mathbf{1 6}$ exerted any considerable activity in any of these assays. Since the absence of activity could be caused either by specific interactions with target cell systems or by insufficient transport into the cell, at this stage no conclusion about mechanism of action of the parent group of compounds could be made.

EXPERIMENTAL

Unless otherwise stated, solvents were evaporated at $40{ }^{\circ} \mathrm{C} / 2 \mathrm{kPa}$ and compounds were dried at $60{ }^{\circ} \mathrm{C} / 2 \mathrm{kPa}$ over $\mathrm{P}_{2} \mathrm{O}_{5}$. Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured at $25^{\circ} \mathrm{C}$ on a Perkin-Elmer 141 MC polarimeter, $[\alpha]_{D}$ values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. NMR spectra were measured on Bruker AMX-3 400 (400 MHz for ${ }^{1} \mathrm{H}, 100.6 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 376.5 MHz for ${ }^{19} \mathrm{~F}$ nuclei), Bruker DRX 500 (500 MHz for ${ }^{1} \mathrm{H}, 125.7 \mathrm{M} \mathrm{Hz}$ for ${ }^{13} \mathrm{C}$ and 470.59 MHz for ${ }^{19} \mathrm{~F}$) and Varian Gemini 300HC (300.075 MHz for ${ }^{1} \mathrm{H}$ and 75.462 MHz for ${ }^{13} \mathrm{C}$). TMS was used as internal standard for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra; CFCl_{3} was an internal standard for ${ }^{19} \mathrm{~F}$ spectra. Chemical shifts are given in ppm (δ-scale), coupling constants (J) in Hz . Mass spectra were measured on a ZAB-EQ (VG Analytical) spectrometer using FAB (ionization by Xe , accelerating voltage 8 kV , glycerol matrix) or El (electron energy 70 eV) techniques. Toluene was degassed in vacuo and
stored over molecular sieves under argon. Substituted phenylboronic acids 11a-11c were supplied by Aldrich.

1,2,3-Tri-O-acetyl-5-deoxy-d-ribose (9)

This compound was prepared in four steps from d-ribose in the same way as described ${ }^{15}$ for its L-enantiomer. The anomeric ratio of the product was ca 1:1 (NMR). Its spectral data were identical with the reported values ${ }^{17}$.

6-(4-M ethoxyphenyl)-9-(tetrahydropyran-2-yl)purine (1c)

Toluene (30 ml) was added to an argon purged flask containing 6-chloro-9-(tetrahydro-pyran-2-yl)purine ($1.19 \mathrm{~g}, 5.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g}, 7.5 \mathrm{mmol})$, 4-methoxyphenylboronic acid ($1.0 \mathrm{~g}, 6.6 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(236 \mathrm{mg}, 0.2 \mathrm{mmol})$ and the mixture was stirred under argon at $100{ }^{\circ} \mathrm{C}$ for 8 h . After cooling down to ambient temperature the mixture was evaporated in vacuo and the residue was chromatographed on a silica gel column (50 g , ethyl ace-tate-light petroleum 1:2 to $9: 1$). Evaporation and drying of the product-containing fractions afforded compound $\mathbf{1 c}$ as an amorphous solid. Yield 1.3 g (84\%), m.p. $152-154{ }^{\circ} \mathrm{C}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane). FAB MS, m/z (rel.\%): 311 (20) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): 1.64-2.20 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$); 3.77-3.84 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$); $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$); 4.16-4.21 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$); 5.84 (dd, $1 \mathrm{H}, \mathrm{J}=2.7$ and 10.4, NCHO); 7.07 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 8.30 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.81 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 8.96 (s, $1 \mathrm{H}, \mathrm{H}-2$). For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ (310.4) calculated: 65.79% C, $5.85 \% \mathrm{H}, 18.05 \% \mathrm{~N}$; found: 65.87% C, $5.90 \% \mathrm{H}, 17.96 \% \mathrm{~N}$.

6-(4-M ethoxyphenyl)purine (2c)

A mixture of a THP-protected base 1c ($1.1 \mathrm{~g}, 3.54 \mathrm{mmol}$), Dowex $50 \mathrm{X} 8\left(\mathrm{H}^{+}\right)(\mathrm{ca} 300 \mathrm{mg}$), methanol (20 ml) and water (1 ml) was refluxed for 1 h , then filtered while hot and the resin was washed with saturated methanolic ammonia (5 ml) followed by methanol (20 ml). The combined filtrates were evaporated and the residue codistilled with toluene. Crystallization of the residue from methanol-toluene with addition of heptane afforded the product as colourless crystals ($710 \mathrm{mg}, 89 \%$), m.p. 271-274 ${ }^{\circ} \mathrm{C} . \mathrm{FAB}$ MS, m/z (rel.\%): 227 (100) [M + H]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$); 7.14 (d, $2 \mathrm{H}, \mathrm{J}=9.0, \mathrm{H}$-arom.) ; 8.58 (s, 1 H , $\mathrm{H}-8$); 8.84-8.89 (m, $3 \mathrm{H}, \mathrm{H}$-arom. and H-2); 13.50 (vbr, $1 \mathrm{H}, \mathrm{NH}$). For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$ (226.2) calculated: $63.71 \% \mathrm{C}, 4.46 \% \mathrm{H}, 24.76 \% \mathrm{~N}$; found: $63.37 \% \mathrm{C}, 4.57 \% \mathrm{H}, 24.39 \% \mathrm{~N}$.

Glycosidations of 6-Phenylpurines $\mathbf{2 a}$ and $\mathbf{2 c}$ with Halogenose $\mathbf{3}$

A mixture of 6-phenylpurine 2a or 2c (1.5 mmol), NaH ($61 \mathrm{mg}, 1.6 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) and acetonitrile (10 ml) was sonicated for 10 min and then stirred at $70{ }^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, halogenose $3(1.2 \mathrm{~g}, 3.1 \mathrm{mmol})$ was added and the mixture was stirred at ambient temperature overnight. The solvent was evaporated and the residue chromatographed on silica gel (ethyl acetate-light petroleum). Inseparable anomeric mixtures 4a/5a [7:3(NMR), $430 \mathrm{mg}, 52 \%$] or 4c/5c [9: 1 (NMR), $585 \mathrm{mg}, 67 \%$] were obtained, respectively.

Mixture 4a/5a. FAB MS, m/z (rel.\%): 549 (35) [M + H], 197 (100). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): 4a: 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.91$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=13.3$, J $\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=$ 5.8, J(2'a, 3^{\prime}) = 2.2, H-2'a); 3.22 (ddd, 1 H , overlapped, H-2’b); 4.67 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$ and $5^{\prime} \mathrm{a}$);
4.79 (dd, $\left.1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=13.2, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 4^{\prime}\right)=5.1, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 5.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 6.65$ (dd, 1 H , $\left.\mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=5.8, \mathrm{~J}\left(1^{\prime}, 2^{\prime} \mathrm{b}\right)=8.1, \mathrm{H}-1^{\prime}\right) ; 7.19(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1, \mathrm{H}$-arom.); 7.29 (d, $2 \mathrm{H}, \mathrm{J}=8.1$, H-arom.); 7.55 (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 7.88 (d, $2 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}$-arom.); 7.98 (d, $2 \mathrm{H}, \mathrm{J}=8.2$, H-arom.); 8.31 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.74 (dd, $2 \mathrm{H}, \mathrm{J}=1.8$ and $8.2, \mathrm{H}$-arom.); 8.98 (s, $1 \mathrm{H}, \mathrm{H}-2$). 5 a : $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 3.22\left(\mathrm{~m}, 1 \mathrm{H}\right.$, overlapped, $\left.\mathrm{H}-2^{\prime} \mathrm{a}\right)$; 4.67 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$ and $5^{\prime} \mathrm{b}$); 4.95 (m, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$); 5.71 (m, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 6.72$ (dd, $1 \mathrm{H}, \mathrm{J}\left(\mathrm{l}^{\prime}, 2^{\prime} \mathrm{a}\right)=$ 1.4, J($\left.1^{\prime}, 2^{\prime} \mathrm{b}\right)=6.9, \mathrm{H}-1^{\prime}$); 7.10 (d, $2 \mathrm{H}, \mathrm{J}=8.1, \mathrm{H}$-arom.); 7.29 (2 H, overlapped, H-arom.); 7.55 (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 7.88 (2 H , overlapped, H-arom.); 7.98 (2 H , overlapped, H-arom.); 8.47 (s, 1 H, H-8); 8.74 (2 H , overlapped, H-arom.); 8.98 (s, $1 \mathrm{H}, \mathrm{H}-2$).

Mixture 4c/5c. FAB MS, m/z (rel.\%): 579 (38) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): 4c: $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.90\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=14.2, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=\right.$ 5.9, J(2'a, $\left.\left.3^{\prime}\right)=2.0, H-2^{\prime} a\right) ; 3.20$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=14.2$, J $\left(2^{\prime} \mathrm{b}, 1^{\prime}\right)=8.1, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 3^{\prime}\right)=6.5$, H-2'b); 3.90 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 4.68 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$ and $5^{\prime} \mathrm{a}$); 4.78 (dd, $1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=13.3$, $\left.\mathrm{J}\left(2^{\prime} \mathrm{b}, 4^{\prime}\right)=5.2, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 5.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 6.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=5.9, \mathrm{~J}\left(1^{\prime}, 2^{\prime} \mathrm{b}\right)=8.1, \mathrm{H}-1^{\prime}\right)$; 7.06 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 7.19 (d, $2 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}$-arom.); 7.28 (d, $2 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}$-arom.); 7.89 (d, 2 H, J = 8.1, H-arom.); 7.98 (d, $2 \mathrm{H}, \mathrm{J}=8.1, \mathrm{H}$-arom.); 8.28 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.78 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 8.93 (s, $1 \mathrm{H}, \mathrm{H}-2$). $5 \mathrm{c}: 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.08(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2^{\prime} \mathrm{b}$); 3.20 (m, 1 H , overlapped, H-2'a); 3.91 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 4.60-5.0 (3 H, overlapped, H-4', 5'a and $5^{\prime} b$); 5.71 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$); 6.72 (dd, $1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=1.8$, J($\left.1^{\prime}, 2^{\prime} \mathrm{b}\right)=6.9$, H-1'); 7.10 (2 H , overlapped, H-arom.); 7.29 (2 H , overlapped, H-arom.); 7.55 (2 H , overlapped, H-arom.); 7.88 (2 H, overlapped, H-arom.); 7.98 (2 H , overlapped, H -arom.); 8.44 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.74 (2 H, overlapped, H-arom.); 8.93 (s, $1 \mathrm{H}, \mathrm{H}-2$).

Glycosidation of 6-Chloropurine (10) with 1,2,3-Tri-O-acetyl-5-deoxyribofuranose (9)
Tin(IV) chloride ($5 \mathrm{ml}, 42.8 \mathrm{mmol}$) was added to a stirred suspension of 6 -chloropurine ($3.4 \mathrm{~g}, 22 \mathrm{mmol}$) and 1,2,3-tri-0-acetyl-5-deoxyribofuranose (ca $1: 1$ anomeric mixture, $4.5 \mathrm{~g}, 17.3 \mathrm{mmol}$) in dry acetonitrile (120 ml) and the mixture was stirred at ambient temperature overnight. Then the mixture was added dropwise into 10% aqueous NaHCO_{3} (500 ml) and extracted with ethyl acetate ($3 \times 250 \mathrm{ml}$). The collected organic layers were washed with 10% aqueous $\mathrm{NaHCO}_{3}\left(300 \mathrm{ml}\right.$) and water (200 ml), dried over anhydrous MgSO_{4} and evaporated. The residue was chromatographed on a silica gel column (500 g , heptane-ethyl acetate - gradient $8: 1$ to $1: 1$). The first fraction afforded the $9-\alpha$-isomer $\mathbf{7 a}(810 \mathrm{mg}, 13 \%$); the second fraction gave the $9-\beta$-isomer $\mathbf{7 b}$ ($1.84 \mathrm{~g}, 30 \%$) and, after the third fraction containing 500 mg of an inseparable complex mixture, the final fraction gave the 7- α-isomer 7c ($220 \mathrm{mg}, 4 \%$).

9-(2,3-Di-O-acetyl-5-deoxy- α-d-ribopentofuranosyl)-6-chloropurine (7a). Yellowish oil; purity ca 90% (NMR, contaminated by minor amounts of the other isomers). FAB MS, m/z (rel.\%): 355 (35) [M + H], 201 (100). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.51 (d, $3 \mathrm{H}, \mathrm{J}=6.5,3 \times \mathrm{H}-5^{\prime}$); 2.08 and $2.19\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 4.67\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=4.5\right.$ and $\left.6.5, \mathrm{H}-4^{\prime}\right) ; 5.15(\mathrm{~m}, 1 \mathrm{H}$, H-3'); 5.89 (brm, 1 H, H-2'); 6.31 (d, 1 H, J = 2.0, H-1'); 8.31 (s, 1 H, H-8); 8.80 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $18.68\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 20.61$ and $20.68\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 80.10\left(\mathrm{CH}-2^{\prime}\right.$ and $\left.\mathrm{CH}-3^{\prime}\right) ; 81.86\left(\mathrm{CH}-4^{\prime}\right) ; 88.56\left(\mathrm{CH}-1^{\prime}\right) ; 132.03(\mathrm{C}-5) ; 143.40(\mathrm{CH}-8) ; 151.16$ and 151.35 (C-4 and C-6); 152.24 (CH-2); 169.44 and $169.62(2 \times \mathrm{CO})$. FAB HRMS, calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 355.0809; found: 355.0782.

9-(2,3-Di-O-acetyl-5-deoxy- β-d-ribopentofuranosyl)-6-chloropurine (7b). Yellowish oil; purity ca 90\% (NMR, contaminated by minor amounts of the other isomers). FAB MS, m/z (rel.\%): 355
(42) $[\mathrm{M}+\mathrm{H}], 201(100) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.53\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4,3 \times \mathrm{H}-5^{\prime}\right) ; 2.09$ and $2.16\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 4.37\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=5.5\right.$ and $\left.6.4, \mathrm{H}-4^{\prime}\right) ; 5.41(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0$ and 5.5, H-3'); 5.98 (dd, $1 \mathrm{H}, \mathrm{J}=5.0$ and $4.8, \mathrm{H}-2^{\prime}$); 6.13 (d, $1 \mathrm{H}, \mathrm{J}=4.8, \mathrm{H}-1^{\prime}$); $8.23(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8) ; 8.79$ (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $18.67\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 20.37$ and $20.54(2 \times$ $\left.\mathrm{CH}_{3} \mathrm{CO}\right) ; 73.17\left(\mathrm{CH}-2^{\prime}\right) ; 74.39\left(\mathrm{CH}-3^{\prime}\right) ; 79.00\left(\mathrm{CH}-4^{\prime}\right) ; 87.21\left(\mathrm{CH}-1^{\prime}\right) ; 132.47(\mathrm{C}-5) ; 143.74$ (CH-8); 151.20 and 151.54 (C-4 and C-6); 152.24 (CH-2); 169.42 and $169.68(2 \times \mathrm{CO}) . \mathrm{FAB}$ HRMS, calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{CIN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 355.0809; found: 355.0773.

7-(2,3-Di-O-acetyl-5-deoxy- α-D-ribopentofuranosyl)-6-chloropurine (7c). Yellowish oil; purity ca 90% (NMR, contaminated by minor amounts of the other isomers). FAB MS, m/z (rel.\%): 355 (32) $[\mathrm{M}+\mathrm{H}], 201(100) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6,3 \times \mathrm{H}-5^{\prime}\right) ; 1.80$ and $2.03\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 4.72\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=3.6\right.$ and $\left.6.6, \mathrm{H}-4^{\prime}\right) ; 5.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6$ and 5.5, H-3'); 5.89 (dd, $1 \mathrm{H}, \mathrm{J}=5.5$ and 5.7, $\mathrm{H}-2^{\prime}$); 6.92 (d, $1 \mathrm{H}, \mathrm{J}=5.7, \mathrm{H}-1^{\prime}$); 8.60 (s, 1 H , $\mathrm{H}-8)$; 8.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $19.32\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 19.95$ and $20.46(2 \times$ $\mathrm{CH}_{3} \mathrm{CO}$); $70.82\left(\mathrm{CH}-2^{\prime}\right) ; 74.44\left(\mathrm{CH}-3^{\prime}\right) ; 80.48\left(\mathrm{CH}-4^{\prime}\right) ; 84.86\left(\mathrm{CH}-1^{\prime}\right) ; 122.19(\mathrm{C}-5) ; 142.66$ (C-6); $147.42(\mathrm{CH}-8) ; 152.48(\mathrm{CH}-2) ; 162.15(\mathrm{C}-4) ; 168.51$ and $169.36(2 \times \mathrm{CO})$. FAB HRMS, calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 355.0809; found: 355.0792 .

Cross-Coupling Reactions of 6-Chloropurines 6, 7b or $\mathbf{8}$ with Phenylboronic Acids 11a-11c. General Procedure

Toluene (10 ml) was added to an argon purged flask containing a 6 -chloropurine derivative $(1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.5 \mathrm{mmol})$, a phenylboronic acid $\mathbf{1 1}(1.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($59 \mathrm{mg}, 0.05 \mathrm{mmol}$) and the mixture was stirred under argon at $100{ }^{\circ} \mathrm{C}$ for 8 h . After cooling down to ambient temperature, the mixture was evaporated in vacuo and the residue was chromatographed on a silica gel column (50 g, ethyl acetate-light petroleum $1: 2$ to $9: 1$). Evaporation and drying of the product containing fractions afforded the 6-phenylpurines 4a-4c, 12a-12c and 13a-13c as foams or amorphous solids.

9-[3,5-Bis-O-(4-toluoyl)-2-deoxy- β-D-erythropentofuranosyl]-6-phenylpurine (4a). Yield 94\%, colourless foam. FAB MS, m/z (rel.\%): 549 (35) [M + H], 197 (100). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.91$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=14.1$, J $\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=$ $\left.5.8, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 3^{\prime}\right)=2.2, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 3.23$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}\right)=14.1, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 1^{\prime}\right)=8.1, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 3^{\prime}\right)=6.4$, H-2'b); 4.64-4.71 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$ and 5^{\prime}); 4.77-4.82 (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 5.86$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(3^{\prime}, 2^{\prime} \mathrm{b}\right)=$ $\left.6.4, \mathrm{~J}\left(3^{\prime}, 4^{\prime}\right)=4.1, \mathrm{~J}\left(3^{\prime}, 2^{\prime} \mathrm{a}\right)=2.2, \mathrm{H}-3^{\prime}\right) ; 6.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.8\right.$ and $\left.8.1, \mathrm{H}-\mathrm{l}^{\prime}\right) ; 7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.1, H-arom.); 7.30 (d, $2 \mathrm{H}, \mathrm{J}=8.1, \mathrm{H}$-arom.); 7.53-7.59 (m, $2 \mathrm{H}, \mathrm{H}$-arom.); 7.89 (d, $2 \mathrm{H}, \mathrm{J}=$ 8.2, H-arom.); 8.00 (d, $2 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}$-arom.); 8.30 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.74 (dd, $2 \mathrm{H}, \mathrm{J}=2.8$ and 8.2, H -arom.); 8.98 (s, $1 \mathrm{H}, \mathrm{H}-2$). FAB HRMS, calculated for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 549.2137$; found: 549.2138.

9-[3,5-Bis-O-(4-toluoyl)-2-deoxy- β-D-erythropentofuranosyl]-6-(4-fluorophenyl)purine (4b). Yield 95\%, yellowish foam. FAB MS, m/z (rel.\%): 567 (31) [M + H], 215 (100). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.91$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=14.2$, J $\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=$ 5.9, J(2'a, $\left.\left.3^{\prime}\right)=2.1, H-2^{\prime} a\right) ; 3.22$ (ddd, $1 H, J\left(2^{\prime} b, 2^{\prime} \mathrm{a}\right)=14.2, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 1^{\prime}\right)=8.0, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 3^{\prime}\right)=6.5$, H-2'b); 4.65-4.70 (m, $2 \mathrm{H}, \mathrm{H}-4^{\prime}$ and 5^{\prime}); 4.76-4.82 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$); 5.85 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{B}^{\prime}$); 6.64 (dd, $1 \mathrm{H}, \mathrm{J}=5.9$ and 8.0, H-1'); 7.16-7.30 (m, $6 \mathrm{H}, \mathrm{H}$-arom.); 7.88 (d, $2 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}$-arom.); 7.99 (d, $2 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}$-arom.); 8.29 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.82 (dd, $2 \mathrm{H}, \mathrm{J}=3.3$ and 8.9, H-arom.); 8.95 (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.65 and $21.75\left(2 \times \mathrm{CH}_{3}\right) ; 37.95\left(\mathrm{CH}_{2}-2^{\prime}\right)$; $63.98\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 75.14\left(\mathrm{CH}-3^{\prime}\right) ; 83.22\left(\mathrm{CH}-4^{\prime}\right) ; 85.07\left(\mathrm{CH}-1^{\prime}\right) ; 115.73(\mathrm{~d}, \mathrm{~J}(\mathrm{~F}, \mathrm{C})=21.5$, CH-arom.); 126.44 and 126.65 ($2 \times$ C-arom.); 129.27, 129.33, 129.63 and 129.85 ($4 \times$

CH-arom.); 131.44 (C-5); $131.74(\mathrm{~d}, \mathrm{~J}(\mathrm{~F}, \mathrm{C})=3.0, \mathrm{C}-\mathrm{i}$-arom); 132.06 (d, J(F,C) $=8.7$, CH-arom.); 142.42 (CH-8); 144.18 and 144.59 ($2 \times \mathrm{CH}$-arom.); 151.96 (C-4); 152.41 (CH-2); 153.98 (C-6); 164.82 (d, J(F,C) $=268, \mathrm{C}-\mathrm{F}) ; 165.99(2 \times \mathrm{CO})$. FAB HRMS, calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{FN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 567.2044$; found: 567.2061.

9-[3,5-Bis-O-(4-toluoyl)-2-deoxy- β-D-erythropentofuranosyl]-6-(4-methoxyphenyl)purine (4c). Yield 97\%, yellowish foam. FAB MS, m/z (rel.\%): 579 (29) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.90$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=14.2$, $\left.J\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=5.9, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 3^{\prime}\right)=2.0, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 3.21\left(d d d, 1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}\right)=14.2, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 1^{\prime}\right)=8.1, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 3^{\prime}\right)=\right.$ $\left.6.5, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 4.66-4.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right.$ and 5$\left.{ }^{\prime}\right) ; 4.76-4.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$; 5.85 (m, 1 H, H-3'); 6.64 (dd, 1 H, J = 5.9 and 8.1, H-1'); 7.07 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 7.20 (d, $2 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}$-arom.); 7.29 (d, $2 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}$-arom.); 7.89 (d, $2 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}$-arom.); 7.99 (d, $2 \mathrm{H}, \mathrm{J}=8.1, \mathrm{H}$-arom.); 8.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.78 (d, $2 \mathrm{H}, \mathrm{J}=8.9, \mathrm{H}$-arom.); 8.92 (s, 1 H , $\mathrm{H}-2)$. FAB HRMS, calculated for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]: 579.2244$; found: 579.2214.

9-(2,3-Di-O-acetyl-5-deoxy- β-d-ribopentofuranosyl)-6-phenylpurine (12a). Yield 96%, colourless oil. FAB MS, m/z (rel.\%): 397 (100) [$\mathrm{M}+\mathrm{H}], 197$ (94). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.54 (d, $\left.3 \mathrm{H}, \mathrm{J}=6.4,3 \times \mathrm{H}-5^{\prime}\right) ; 2.08$ and $2.15\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 4.37(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=5.2$ and $6.4, \mathrm{H}-4^{\prime}$); 5.45 (dd, $1 \mathrm{H}, \mathrm{J}=5.2$ and $5.5, \mathrm{H}-3^{\prime}$); 6.04 (dd, $1 \mathrm{H}, \mathrm{J}=5.1$ and $5.5, \mathrm{H}-2^{\prime}$); $6.20(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=5.1, \mathrm{H}-\mathrm{l}^{\prime}\right) ; 7.52-7.58$ (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 8.22 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.73-8.76 (m, 2 H , H-arom.); 9.04 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $18.71\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 20.41$ and 20.58 $\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 73.23\left(\mathrm{CH}-2^{\prime}\right) ; 74.56\left(\mathrm{CH}-3^{\prime}\right) ; 78.82\left(\mathrm{CH}-4^{\prime}\right) ; 86.75\left(\mathrm{CH}-1^{\prime}\right) ; 128.67,129.84$ and 131.10 (CH-arom.); 131.82 and 135.48 (C-i-arom. and $\mathrm{C}-5$); 142.81 (CH-8); 152.04 and 155.42 (C-4 and C-6); 152.68 (CH-2); 169.45 and $169.72(2 \times$ CO). FAB HRMS, calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 397.1512; found: 397.1569.

9-(2,3-Di-O-acetyl-5-deoxy- β-d-ribopentofuranosyl)-6-(4-fluorophenyl)purine (12b). Yield 89\%, colourless oil. FAB MS, m/z (rel.\%): 415 (91) [M + H], 215 (100). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.54 (d, $3 \mathrm{H}, \mathrm{J}=6.5,3 \times \mathrm{H}-5^{\prime}$); 2.09 and $2.16\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 4.37(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=$ 5.4 and $\left.6.5, \mathrm{H}-4^{\prime}\right) ; 5.45\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=\mathrm{J}_{2}=5.4, \mathrm{H}-3^{\prime}\right) ; 6.04$ (dd, $1 \mathrm{H}, \mathrm{J}=5.0$ and $5.4, \mathrm{H}-2^{\prime}$); 6.20 (d, $1 \mathrm{H}, \mathrm{J}=5.0, \mathrm{H}-1^{\prime}$); 7.21-7.26 (m, $2 \mathrm{H}, \mathrm{H}$-arom.); 8.22 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.81-8.86 (m, $2 \mathrm{H}, \mathrm{H}$-arom.); 9.01 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $18.74\left(\mathrm{CH}_{3}-5^{\prime}\right.$); 20.39 and $20.56\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right)$; $73.22\left(\mathrm{CH}-2^{\prime}\right) ; 74.53\left(\mathrm{CH}-3^{\prime}\right) ; 78.80\left(\mathrm{CH}-4^{\prime}\right) ; 86.78\left(\mathrm{CH}-1^{\prime}\right) ; 115.72(\mathrm{~d}, \mathrm{~J}=$ 21.5, CH-arom.); 131.40 and 131.67 (C-i-arom. and $\mathrm{C}-5$); 132.06 (d, J $=8.1, \mathrm{CH}$-arom.); 142.80 (CH-8); 152.02 and 154.15 (C-4 and C-6); 152.61 (CH-2); 164.74 (d, J = 252.0, C-F); 169.44 and $169.71(2 \times \mathrm{CO}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-109.30(\mathrm{~s}, \mathrm{FPh})$. FAB HRMS, calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{FN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 415.1417$; found: 415.1456.

9-(2,3-Di-O-acetyl-5-deoxy- β-D-ribopentofuranosyl)-6-(4-methoxyphenyl)purine (12c). Yield 96\%, yellowish oil. FAB MS, m/z (rel.\%): 427 (92) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) : $1.54\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4,3 \times \mathrm{H}-5^{\prime}\right) ; 2.08$ and $2.15\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 3.90(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 4.36 (dq, $1 \mathrm{H}, \mathrm{J}=5.2$ and $6.4, \mathrm{H}-4^{\prime}$); 5.44 (dd, $1 \mathrm{H}, \mathrm{J}_{1}=\mathrm{J}_{2}=5.2, \mathrm{H}-3^{\prime}$); 6.03 (dd, $1 \mathrm{H}, \mathrm{J}=5.0$ and $5.2, \mathrm{H}-2^{\prime}$); 6.20 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=5.0, \mathrm{H}-1^{\prime}$); 7.07 (d, $2 \mathrm{H}, \mathrm{J}=8.7$, H-arom.); 8.19 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (d, $2 \mathrm{H}, \mathrm{J}=8.7$, H -arom.); 8.97 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{CNMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $18.78\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 20.41$ and $20.58\left(2 \times \mathrm{CH}_{3} \mathrm{CO}\right) ; 55.38\left(\mathrm{OCH}_{3}\right) ; 73.22\left(\mathrm{CH}-2^{\prime}\right) ; 74.56\left(\mathrm{CH}-3^{\prime}\right)$; 78.78 ($\mathrm{CH}-4^{\prime}$); 86.62 ($\mathrm{CH}-1^{\prime}$); 114.11 (CH-arom.); 128.17 and 131.22 (C-i-arom. and $\mathrm{C}-5$); 131.61 (CH -arom.); 142.25 ($\mathrm{CH}-8$); 151.83 and 155.02 ($\mathrm{C}-4$ and $\mathrm{C}-6$); $152.63(\mathrm{CH}-2) ; 162.16$ $\left(\mathrm{C}-\mathrm{OCH}_{3}\right) ; 169.43$ and $169.72(2 \times \mathrm{CO})$. FAB HRMS, calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$: 427.1618; found: 427.1594.

9-(2,3-Diacetoxypropyl)-6-phenylpurine (13a). Yield 82\%, colourless amorphous solid. FAB MS, m/z (rel.\%): 355 (100) [$\mathrm{M}+\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.04 and $2.09(2 \times \mathrm{s}, 2 \times$
$3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}$); 4.15 (dd, $1 \mathrm{H}, \mathrm{J}=12.2$ and $\left.4.9, \mathrm{H}-3^{\prime} \mathrm{a}\right) ; 4.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.2$ and 4.5 , $\mathrm{H}-3^{\prime} \mathrm{b}$); 4.52 (dd, $1 \mathrm{H}, \mathrm{J}=14.7$ and $\left.7.0, \mathrm{H}-1^{\prime} \mathrm{a}\right) ; 4.62$ (dd, $1 \mathrm{H}, \mathrm{J}=14.7$ and $3.9, \mathrm{H}-\mathrm{l}^{\prime} \mathrm{b}$); 5.43-5.49 (m, 1 H, H-2'); 7.51-7.59 (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 8.13 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (d, $2 \mathrm{H}, \mathrm{J}=$ 6.8, H-arom.); 9.02 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.60 and $20.71\left(\mathrm{CH}_{3}\right)$; $43.66\left(\mathrm{CH}_{2}-\mathrm{I}^{\prime}\right) ; 62.36\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 69.38\left(\mathrm{CH}-2^{\prime}\right) ; 128.65,129.78$ and 131.08 (CH -arom.); 130.00 and 135.50 (C-i-arom. and C-5); $144.32(\mathrm{CH}-8) ; 152.65(\mathrm{CH}-2$ and $\mathrm{C}-4) ; 155.10(\mathrm{C}-6) ; 169.66$ and 170.23 (CO). FAB HRMS, calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$: 355.1406; found: 355.1380 .

9-(2,3-Diacetoxypropyl)-6-(4-fluorophenyl)purine (13b). Yield 81\%, colourless amorphous solid. FAB MS, m/z (rel.\%): 373 (100) [M + H]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.05 and $2.10(2 \times \mathrm{s}$, $2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}$); 4.15 (dd, $1 \mathrm{H}, \mathrm{J}=12.2$ and $\left.5.0, \mathrm{H}-3^{\prime} \mathrm{a}\right) ; 4.38$ (dd, $1 \mathrm{H}, \mathrm{J}=12.2$ and 4.5 , $\mathrm{H}-3^{\prime} \mathrm{b}$); 4.53 (dd, $1 \mathrm{H}, \mathrm{J}=14.7$ and $7.0, \mathrm{H}-1^{\prime} \mathrm{a}$); 4.64 (dd, $1 \mathrm{H}, \mathrm{J}=14.7$ and $4.0, \mathrm{H}-\mathrm{l}^{\prime} \mathrm{b}$); 5.43-5.49 (m, 1 H, H-2'); 7.23-7.28 (m, 2 H, H-arom.); 8.13 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.84-8.89 (m, 2 H , H-arom.); 9.00 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - 109.33 (s, FPh). FAB HRMS, calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$: 373.1312; found: 373.1398.

9-(2,3-Diacetoxypropyl]-6-(4-methoxyphenyl)purine (13c). Yield 85\%, yellowish amorphous solid. FAB MS, m/z (rel.\%): 385 (100) [M + H]. ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.04$ and $2.10(2 \times$ $\mathrm{s}, 2 \times 3 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{CO}$); $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 4.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0\right.$ and $\left.4.6, \mathrm{H}-\mathrm{B}^{\prime} \mathrm{a}\right) ; 4.38$ (dd, $1 \mathrm{H}, \mathrm{J}=12.0$ and $4.0, \mathrm{H}-3^{\prime} \mathrm{b}$); 4.51 (dd, $1 \mathrm{H}, \mathrm{J}=14.3$ and 6.8, $\mathrm{H}-1^{\prime} \mathrm{a}$); 4.63 (dd, $1 \mathrm{H}, \mathrm{J}=$ 14.3 and 3.2, H-1'b); 5.45 (brm, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$); 7.08 (d, $2 \mathrm{H}, \mathrm{J}=8.5$, H-arom.); 8.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.82 (d, $2 \mathrm{H}, \mathrm{J}=8.5, \mathrm{H}$-arom.); 8.97 (s, $1 \mathrm{H}, \mathrm{H}-2$). FAB HRMS, calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 385.1512; found: 385.1489.

Deacylation of the Protected Nucleosides. General Procedure

Method A: A 1 m solution of $\mathrm{MeONa}(50 \mu \mathrm{l}, 0.05 \mathrm{mmol})$ was added to a solution of the protected nucleoside ($0.5-0.8 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ and the mixture was stirred at ambient temperature for 48-72 h (monitored by TLC, until completion of the reaction). Then the solvent was evaporated and the residue was chromatographed on a column of silica gel (50 g , EtOAc-MeOH, $10: 0$ to $7: 3$). Evaporation of the appropriate product-containing fractions, crystallization and/or drying afforded a free nucleosides as crystals or amorphous solids.

Method B: A 1 m solution of $\mathrm{MeONa}(200 \mu \mathrm{l}, 0.2 \mathrm{mmol})$ was added to the solution of the protected nucleoside ($0.5-0.8 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ and the mixture was stirred at ambient temperature overnight. The crystals (when formed) were filtered off. Then the solution was neutralized by an addition of Dowex $50 \times 8\left(\mathrm{H}^{+}\right)$(ca 100 mg) and filtered. The ion-exchanger was washed with saturated methanolic ammonia (5 ml) followed by methanol (20 ml) and the combined filtrates were evaporated to dryness. The collected crystals and residue were recrystallized from EtOH-toluene to give the free nucleosides.

9-(2-Deoxy- β-D-erythropentofuranosyl)-6-phenylpurine (14a). Yield 88\% (method A), colourless crystals, m.p. $122-124{ }^{\circ} \mathrm{C}$ (MeOH-toluene-heptane), $[\alpha]_{D}-17.6$ (c 0.2, DMF). FAB MS, m / z (rel.\%): 313 (45) $[\mathrm{M}+\mathrm{H}], 197$ (100). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 2.40 (ddd, 1 H , $\left.J\left(2^{\prime} b, 2^{\prime} a\right)=13.2, J\left(2^{\prime} b, 1^{\prime}\right)=6.7, J\left(2^{\prime} b, 3^{\prime}\right)=3.6, H-2^{\prime} b\right) ; 2.82$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=13.2$, $\left.\mathrm{J}\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=6.7, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 3^{\prime}\right)=6.4, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 3.58$ (ddd, $1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=10.4, \mathrm{~J}\left(5^{\prime} \mathrm{b}, 4\right)=\mathrm{J}\left(5^{\prime} \mathrm{b}, \mathrm{OH}\right)=$ 5.4, H-5'b); 3.65 (ddd, $\left.1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=10.4, \mathrm{~J}\left(5^{\prime} \mathrm{a}, 4\right)=\mathrm{J}\left(5^{\prime} \mathrm{a}, \mathrm{OH}\right)=5.4, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.93(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4^{\prime}$); 4.48 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$); $5.00\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4,5^{\prime}-\mathrm{OH}\right.$); 5.36 (d, $1 \mathrm{H}, \mathrm{J}=4.1,3^{\prime}-\mathrm{OH}$); $6.54(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=\mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{b}\right)=6.7, \mathrm{H}-\mathrm{I}^{\prime}\right) ; 7.59$ (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 8.85-8.79 (m, $2 \mathrm{H}, \mathrm{H}$-arom.);
8.88 (s, $1 \mathrm{H}, \mathrm{H}-8$); 9.00 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DM SO-d d_{6}): ≈ 39 (overlapped by DMSO, C-2'); 61.49 (C-5'); 70.57 (C-3'); 83.72 (C-1'); 87.99 (C-4'); 128.62, 129.33 and 131.05 ($3 \times \mathrm{CH}$-arom.); 130.84 and 135.26 (C-5 and C-i-arom.); 144.77 ($\mathrm{CH}-8$); 151.77 ($\mathrm{CH}-2$); 151.90 and 152.84 ($\mathrm{C}-6$ and $\mathrm{C}-4$). For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ (312.3) calculated: $61.53 \% \mathrm{C}, 5.16 \% \mathrm{H}$, $17.94 \% \mathrm{~N}$; found: $61.14 \% \mathrm{C}, 5.21 \% \mathrm{H}, 17.61 \% \mathrm{~N}$.

9-(2-Deoxy- β-D-erythropentofuranosyl)-6-(4-fluorophenyl)purine (14b). Yield 85\% (method A), colourless crystals, m.p. $122-124{ }^{\circ} \mathrm{C}$ (MeOH -toluene-heptane), $[\alpha]_{\mathrm{D}}-18.3$ (c 0.2, DMF). FAB MS, m/z (rel.\%): 331 (65) [M + H], 215 (100). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): 2.40 (ddd, 1 H , $\left.J\left(2^{\prime} b, 2^{\prime} a\right)=13.1, J\left(2^{\prime} b, 1^{\prime}\right)=6.7, J\left(2^{\prime} b, 3^{\prime}\right)=3.7 \mathrm{H}-2^{\prime} b\right) ; 2.81\left(d d d, 1 \mathrm{H}, J\left(2^{\prime} a, 2^{\prime} b\right)=13.1\right.$, $\left.J\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=6.7, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 3^{\prime}\right)=6.4, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 3.58\left(d d d, 1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=10.3, \mathrm{~J}\left(5^{\prime} \mathrm{b}, 4\right)=\mathrm{J}\left(5^{\prime} \mathrm{b}, \mathrm{OH}\right)=\right.$ 5.4, H-5'b); 3.66 (ddd, $\left.1 \mathrm{H}, \mathrm{J}\left(5^{\prime} \mathrm{a}, 5^{\prime} \mathrm{b}\right)=10.3, \mathrm{~J}\left(5^{\prime} \mathrm{a}, 4\right)=\mathrm{J}\left(5^{\prime} \mathrm{a}, \mathrm{OH}\right)=5.4, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.92(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4^{\prime}$); 4.48 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$); $5.00\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4,5^{\prime}-\mathrm{OH}\right.$); 5.36 (d, $1 \mathrm{H}, \mathrm{J}=4.1,3^{\prime}-\mathrm{OH}$); $6.53(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=\mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{b}\right)=6.7, \mathrm{H}-1^{\prime}\right) ; 7.43$ (t, $2 \mathrm{H}, \mathrm{J}=8.8$, H-arom); 8.88 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.90 (m, 2 H arom. overlapped); 8.98 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DM SO-d): ≈ 39 (overlapped by DMSO, C-2'); 61.45 (C-5'); 70.53 (C-3'); 83.71 (C-1'); 87.97 (C-4'); 115.66 (d, J(C,F)=21.5, CH -arom); 130.54 (C-i-arom. and $\mathrm{C}-5$); 131.74 (d, J(C,F) $=8.7, \mathrm{CH}$-arom.); 144.87 (CH-8); 151.62 and 151.88 (C-4 and C-6); 151.76 (CH-2); 163.84 ($d, J(C, F)=248.1, C F) .{ }^{19} \mathrm{~F}$ NMR (376.5 M Hz, DMSO-d ${ }_{6}$): -108.74 (s, FPh). For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3}$ (330.3) calculated: $58.18 \% \mathrm{C}$, 4.58\% H, 16.96\% N; found: 57.87\% C, 4.56\% H, 16.59\% N.

9-(2-Deoxy- β-D-erythropentofuranosyl)-6-(4-methoxyphenyl)purine (14c). Yield 89\% (method A), colourless crystals, m.p. $138-141{ }^{\circ} \mathrm{C}$ (MeOH-toluene-heptane), $[\alpha]_{D}-19.9$ (c 0.2, DMF). FAB MS, m/z (rel.\%): 343 (65) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $_{6}$): 2.39 (ddd, $\left.1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{a}, 2^{\prime} \mathrm{b}\right)=13.3, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 1^{\prime}\right)=6.7, \mathrm{~J}\left(2^{\prime} \mathrm{a}, 3^{\prime}\right)=3.6, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 2.81\left(d d d, 1 \mathrm{H}, \mathrm{J}\left(2^{\prime} \mathrm{b}, 2^{\prime} \mathrm{a}\right)=13.3\right.$, $\left.J\left(2^{\prime} \mathrm{b}, 1^{\prime}\right)=6.7, \mathrm{~J}\left(2^{\prime} \mathrm{b}, 3^{\prime}\right)=6.7, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 3.53-3.58$ and $3.62-3.68\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right) ; 3.87(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$); 3.93 (brm, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$); 4.47 (brs, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ; 5.04$ (t, $\left.1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 5^{\prime}\right)=5.5, \mathrm{OH}-5^{\prime}\right)$; 5.38 (d, $\left.1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 3^{\prime}\right)=4.1, \mathrm{OH}-3^{\prime}\right) ; 6.53$ (dd, $\left.1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{a}\right)=\mathrm{J}\left(1^{\prime}, 2^{\prime} \mathrm{b}\right)=6.7, \mathrm{H}-\mathrm{l}^{\prime}\right) ; 7.16$ (d, 2 H , J = 8.9, H-arom.); 8.84 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.85 (d, J = 8.9, H-arom.); 8.93 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d ${ }_{6}$): $39.35\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 55.53\left(\mathrm{OCH}_{3}\right) ; 61.72\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.79\left(\mathrm{CH}-3^{\prime}\right)$; 83.86 (CH-1'); 88.15 (C-4'); 114.30 (CH-arom.); 127.91 (C-i-arom.); 130.35 (C-5); 131.30 (CH-arom.); 144.45 (CH-8); 151.79 (C-4); 151.93 (CH-2); 152.84 (C-6); 161.86 (C-OMe). For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ (342.4) calculated: $59.64 \% \mathrm{C}, 5.30 \% \mathrm{H}, 16.37 \% \mathrm{~N}$; found: $59.88 \% \mathrm{C}, 5.58 \% \mathrm{H}$, 16.01\% N.

9-(5-Deoxy- β-D-ribopentofuranosyl)-6-phenylpurine (15a). Yield 72\% (method A), colourless crystals, m.p. $163-165^{\circ} \mathrm{C}\left(96 \%\right.$ aqueous EtOH), $[\alpha]_{D}-60.6$ (c 0.2, DMF). FAB MS, m/z (rel. \%): 313 (75) [M + H], 197 (100). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{2}$ d): $1.36\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=5.9,3 \times \mathrm{H}-5^{\prime}\right)$; 4.03-4.06 (m, $2 \mathrm{H}, \mathrm{H}-3^{\prime}$ and H-4'); 4.77 (m, $1 \mathrm{H}, \mathrm{CH}-2^{\prime}$); 5.24 (d, $1 \mathrm{H}, \mathrm{J}=4.8,3^{\prime}-\mathrm{OH}$); 5.53 (d, $1 \mathrm{H}, \mathrm{J}=5.6,2^{\prime}-\mathrm{OH}$); 6.05 (d, $1 \mathrm{H}, \mathrm{J}=4.8, \mathrm{H}-1^{\prime}$); 7.57-7.62 (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 8.81-8.83 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$-arom.); 8.87 (s, $1 \mathrm{H}, \mathrm{H}-8$); 9.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $18.93\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 73.10\left(\mathrm{CH}-2^{\prime}\right) ; 74.58$ and $80.11\left(\mathrm{CH}-3^{\prime}\right.$ and $\left.\mathrm{CH}-4^{\prime}\right) ; 88.05\left(\mathrm{CH}-1^{\prime}\right) ; 128.67$, 129.38 and 131.12 (CH-arom.); 130.89 (C-5); 135.24 (C-i-arom.); 145.29 (CH-8); 151.98 (CH-2); 152.21 (C-4); $152.99(\mathrm{C}-6)$. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (321.3) calculated: $59.80 \% \mathrm{C}$, 5.33\% H, 17.44\% N; found: 60.15\% C, 5.14\% H, 17.29\% N.

9-(5-D eoxy- β-D-ribopentofuranosyl)-6-(4-fluorophenyl)purine (15b). Yield 76\% (method A), colourless crystals, m.p. $172-175{ }^{\circ} \mathrm{C}$ (96% aqueous EtOH), $[\alpha]_{D}-50.0$ (c 0.2, DMF). FAB MS, m / z (rel.\%): 331 (53) [M + H], 215 (100). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $1.36(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=5.8$, $\left.3 \times \mathrm{H}-5^{\prime}\right) ; 4.01-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\mathrm{H}-4^{\prime}$); $4.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right) ; 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7$, $3^{\prime}-\mathrm{OH}$); 5.51 (d, $1 \mathrm{H}, \mathrm{J}=5.6,2^{\prime}-\mathrm{OH}$); 6.05 (d, $1 \mathrm{H}, \mathrm{J}=4.8, \mathrm{H}-\mathrm{l}^{\prime}$); 7.42-7.46 (m, $2 \mathrm{H}, \mathrm{H}$-arom.);
8.87 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.89-8.92 (m, $2 \mathrm{H}, \mathrm{H}$-arom.); 9.01 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO-d ${ }_{6}$): $18.91\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 73.11\left(\mathrm{CH}-2^{\prime}\right) ; 74.58$ and $80.12\left(\mathrm{CH}-3^{\prime}\right.$ and $\left.\mathrm{CH}-4^{\prime}\right) ; 88.09\left(\mathrm{CH}-1^{\prime}\right)$; 115.76 (d, J(C,F) = 21.9, CH-arom.); 130.63 (C-5 and C-i-arom.); 131.81 (d, J(C,F) = 8.3, CH-arom.); 145.37 (CH-8); 151.97 (CH-2); 151.83 and 152.21 (C-4 and $\mathrm{C}-6$); 163.91 (d, $\mathrm{J}(\mathrm{C}, \mathrm{F})=250.3, \mathrm{C}-\mathrm{F}) .{ }^{19} \mathrm{~F}$ NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -108.70 (s, FPh). For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (339.3) calculated: $56.63 \% \mathrm{C}, 4.75 \% \mathrm{H}, 16.51 \% \mathrm{~N}$; found: $56.78 \% \mathrm{C}$, 4.49\% H, 16.48\% N.

9-(5-Deoxy- β-D-ribopentofuranosyl)-6-(4-methoxyphenyl)purine (15c). Yield 76\% (method A), colourless crystals, m.p. $118-121^{\circ} \mathrm{C}$ (96% aqueous EtOH), $[\alpha]_{D}-68.4$ (c 0.2, DMF). FAB MS, m / z (rel.\%): 343 (51) [M + H], 227 (100). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 1.35 (d, $3 \mathrm{H}, \mathrm{J}=5.7$, $\left.3 \times \mathrm{H}-5^{\prime}\right) ; 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 4.03-4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right) ; 4.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{z}^{\prime}\right) ; 5.21$ (d, $1 \mathrm{H}, \mathrm{J}=4.7,3^{\prime}-\mathrm{OH}$); 5.51 (d, $1 \mathrm{H}, \mathrm{J}=5.6,2^{\prime}-\mathrm{OH}$); 6.03 (d, $1 \mathrm{H}, \mathrm{J}=4.8, \mathrm{H}-1^{\prime}$); 7.16 (d, 2 H , J = 8.8, H-arom.); 8.81 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.84 (d, $2 \mathrm{H}, \mathrm{J}=8.8, \mathrm{H}$-arom.); 8.94 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (125.8 MHz , DMSO-d $\left.{ }_{6}\right): 18.90\left(\mathrm{CH}_{3}-5^{\prime}\right) ; 55.35\left(\mathrm{OCH}_{3}\right) ; 73.10\left(\mathrm{CH}-2^{\prime}\right) ; 74.58$ and 80.04 ($\mathrm{CH}-3^{\prime}$ and $\mathrm{CH}-4^{\prime}$); 88.00 ($\mathrm{CH}-1^{\prime}$); 114.13 (CH-arom.); 127.70 (C-i-arom.); 130.21 (C-5); 131.14 (CH-arom.); 144.70 (CH-8); 151.91 (CH-2); 152.80 (C-4 and $\mathrm{C}-6$); 161.71 (C-OMe). For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (351.4) calculated: $58.11 \% \mathrm{C}, 5.45 \% \mathrm{H}, 15.95 \% \mathrm{~N}$; found: 58.05% C, $5.57 \% \mathrm{H}, 16.04 \% \mathrm{~N}$.

9-(2,3-Dihydroxypropyl)-6-phenylpurine (16a). Yield 75\% (method B), colourless crystals, m.p. 159-162 ${ }^{\circ} \mathrm{C}$ (EtOH-toluene-heptane). El MS, m/z (rel.\%): 270 (13) [M], 252 (38), 239 (42), 209 (100), 196 (95). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): 3.36-3.52 (m, $2 \mathrm{H}, 2 \times \mathrm{H}-3^{\prime}$, in part overlapped with $\mathrm{H}_{2} \mathrm{O}$); 3.91-3.99 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$); 4.20 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and 8.6, H-1'a); 4.50 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and $3.4, \mathrm{H}-1^{\prime} \mathrm{b}$); 4.87 (t, $1 \mathrm{H}, \mathrm{J}=5.6,3^{\prime}-\mathrm{OH}$); 5.16 (d, $1 \mathrm{H}, \mathrm{J}=5.5,2^{\prime}-\mathrm{OH}$); 7.56-7.63 (m, $3 \mathrm{H}, \mathrm{H}$-arom.); 8.60 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.86 (dd, $2 \mathrm{H}, \mathrm{J}=1.8$ and 8.0, H-arom.); 8.99 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 46.79\left(\mathrm{CH}_{2}-1^{\prime}\right) ; 63.61\left(\mathrm{CH}_{2}-\mathrm{B}^{\prime}\right) ; 69.46$ (CH-2'); 128.61, 129.31 and 130.91 (CH-arom.); 130.30 and 135.51 (C-i-arom. and C-5); 147.30 (CH-8); 151.57 ($\mathrm{CH}-2$); 152.35 and 152.68 (C-4 and C-6). El HRMS, calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ [M]: 270.1117; found: 270.1125. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (270.3) calculated: $62.21 \% \mathrm{C}$, 5.22\% H, 20.73\% N; found: 61.87\% C, 5.14\% H, 20.37\% N.

9-(2,3-Dihydroxypropyl)-6-(4-fluorophenyl)purine (16b). Yield 70\% (method B), colourless crystals, m.p. $158-161^{\circ} \mathrm{C}$ (EtOH-toluene-heptane). El MS, m/z (rel.\%): 288 (21) [M], 270 (23), 257 (29), 227 (57), 214 (63), 43 (100). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): 3.34-3.50 (m, 2 H , $2 \times \mathrm{H}-3^{\prime}$, in part overlapped with $\mathrm{H}_{2} \mathrm{O}$); 3.94 (brm, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$); 4.20 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and 8.6, H-1'a); 4.50 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and 2.7, $\mathrm{H}-\mathrm{l}^{\prime} \mathrm{b}$); 4.87 (t, $1 \mathrm{H}, \mathrm{J}=5.3,3^{\prime}-\mathrm{OH}$); 5.15 (d, 1 H , J = 5.3, 2'-OH); 7.44 (dd, $2 \mathrm{H}, \mathrm{J}=8.7, \mathrm{H}$-arom.); 8.60 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.85-8.88 (m, 2 H , H-arom.); 8.99 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $46.81\left(\mathrm{CH}_{2}-\mathrm{l}^{\prime}\right) ; 63.61$ $\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 69.45\left(\mathrm{CH}-2^{\prime}\right) ; 115.66$ (d, J(C,F) $=21.2, \mathrm{CH}$-arom.); 130.03 and 135.25 (C-i-arom. and $\mathrm{C}-5$); 131.75 (CH-arom.); 147.39 (CH-8); 151.56 (CH-2); 151.17 and 152.68 (C-4 and $\mathrm{C}-6$); 163.80 (d, J(C,F) $=249.3, \mathrm{C}-\mathrm{F}) .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -109.12 (s, FPh). El HRMS, calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}_{2}$ [M]: 288.1035; found: 288.1023. For $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}_{2}$ (288.3) calculated: 58.33% C, $4.55 \% \mathrm{H}, 19.44 \% \mathrm{~N}$; found: $57.99 \% \mathrm{C}, 4.68 \% \mathrm{H}, 19.08 \% \mathrm{~N}$.

9-(2,3-Dihydroxypropyl)-6-(4-methoxyphenyl)purine (16c). Yield 73\% (method B), colourless crystals, m.p. 164-166 ${ }^{\circ} \mathrm{C}$ (EtOH-toluene-heptane). El MS, m/z (rel.\%): 300 (52) [M], 283 (19), 269 (36), 239 (56), 226 (100). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$): 3.36-3.51 (m, $2 \mathrm{H}, 2 \times$ $\mathrm{H}-3^{\prime}$); 3.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$); 3.89-3.97 (m, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$); 4.18 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and 8.5, H-1'a); 4.48 (dd, $1 \mathrm{H}, \mathrm{J}=13.9$ and $3.4, \mathrm{H}^{\prime} \mathbf{l}^{\prime} \mathrm{b}$); 4.85 (t, $1 \mathrm{H}, \mathrm{J}=5.6,3^{\prime}-\mathrm{OH}$); 5.14 (d, $1 \mathrm{H}, \mathrm{J}=5.5$, $2^{\prime}-\mathrm{OH}$); 7.16 (d, $2 \mathrm{H}, \mathrm{J}=8.9$, H-arom.); 8.54 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.88 (d, $2 \mathrm{H}, \mathrm{J}=8.9$, H-arom.);
8.92 (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR (100.6 MHz , DMSO-d $)$) $46.73\left(\mathrm{CH}_{2}-\mathrm{l}^{\prime}\right) ; 55.35\left(\mathrm{OCH}_{3}\right) ; 63.63$ $\left(\mathrm{CH}_{2}-3^{\prime}\right) ; 69.48$ ($\mathrm{CH}-2^{\prime}$); 114.09 (CH-arom.); 128.00 and 129.65 (C-i-arom. and C-5); 131.07 (CH-arom.); 146.75 (CH-8); 151.54 (CH-2); 152.20 and 152.38 (C-4 and $\mathrm{C}-6$); 161.56 (C-OMe). El HRMS, calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ [M]: 300.1222; found: 300.1258. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ (330.3) calculated: $59.99 \% \mathrm{C}, 5.37 \% \mathrm{H}, 18.66 \% \mathrm{~N}$; found: $59.61 \% \mathrm{C}, 5.23 \% \mathrm{H}$, 18.40\% N.

This work was supported by the Grant Agency of the Czech Republic (grants No. 203/98/P027, No. 203/00/0036 and No. 203/94/K001). Excellent technical assistance of Ms K. Havlícková is grate fully acknowledged. The authors' thanks are also due to the staff of the mass spectrometry and analytical departments of this Institute.

REFERENCES

1. Montgomery J. A., Hewson K: J. Med. Chem. 1968, 11, 48.
2. a) McGarrity G. J., Carson D. A.: Exp. Cell Res. 1982, 139, 199; b) Whitaker A. M., Windsor G. D., Burnett C. M., Taylor C. H.: Dev. Biol. Stand. 1987, 66, 503; c) Ishiguro K., Taira S., Sasaki T., Nariuchi H.: J. Immunol. Methods 1988, 108, 39.
3. a) Parker W. B., King S. A., Allan P. W., Bennett L. L., Jr., Secrist J. A., Montgomery J. A., Gilbert K. S., Waud W. R., Wells A. H., Gillespie G. Y., Sorscher E. J.: Hum. Gene Ther. 1997, 8, 1637; b) Parker W. B., Allan P. W., Shaddix S. C., Rose, L. M., Speegle H. F., Gillespie G. Y., Bennett L. L., Jr.: Biochem. Pharmacol. 1998, 55, 1673.
4. Brathe A., Gundersen L. L., Rise F., Eriksen A. B., Vollsnes A. V., Wang L. N.: Tetrahedron 1999, 55, 211.
5. Hocková D., Hocek M., Dvořáková H., Votruba I.: Tetrahedron 1999, 55, 11109.
6. Cocuzza A. J., Chidester D. R., Culp S., Fitzgerald L., Gilligan P.: Bioorg. Med. Chem. Lett. 1999, 9, 1063.
7. Bakkestuen A. K., Gundersen L. L., Langli G., Liu F., Nolsøe J. M. J.: Bioorg. Med. Chem. Lett. 2000, 10, 1207.
8. Hocek M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817.
9. a) Hocek M., Masojídková M., Holý A.: Collect. Czech. Chem. Commun. 1997, 62, 136;
b) Česnek M., Hocek M., Holý A.: Collect. Czech. Chem. Commun. 2000, 65, 1357.
10. Plagemann P. G., Wohlhueter R. M.: Biochem. Pharmacol. 1983, 32, 1433.
11. Havelková M., Hocek M., Česnek M., Dvořák D.: Synlett 1999, 1145.
12. Hocek M., Holý A.: Collect. Czech. Chem. Commun. 1999, 64, 229.
13. Seela F., Winter H.: Nucleosides Nucleotides 1995, 14, 129.
14. Holý A., Rosenberg I., Dvořáková H.: Collect. Czech. Chem. Commun. 1989, 54, 2470.
15. Ramasamy K. S., Tam R. C., Bard J., Averett D. R.: J. Med. Chem. 2000, 43, 1019.
16. Hřebabecký H., Dočkal J., Holý A.: Collect. Czech. Chem. Commun. 1994, 59, 1408.
17. Wang G., Tam R. C., Gunic E., Du J., Bard J., Pai B.: J. Med. Chem. 2000, 43, 2566.
18. Schmidt R. R., Lösch G. R., Fischer P.: Chem. Ber. 1980, 113, 2891.
19. Vorbrüggen H. in: Nucleoside Analogues. Chemistry, Biology and Medical Applications (R. T. Walker, E. De Clercq and F. Eckstein, Eds), p. 35. Plenum Press, New York 1979.

[^0]: + Part I of this Series, see ref. ${ }^{8}$

